The Development of Mathematics Learning Devices Based on Realistic Approach to Improve Creative Thinking and Mathematical Communication Ability for Junior High School Students at SMP PAB 2 Helvetia

Satria Wiraprana¹, Edy Surya²
¹, ², ³ Mathematics Education Department, Postgraduate Studies, Universitas Negeri Medan, Jl. Williem Iskandar, Medan, Indonesia
satriawiraprana@gmail.com

Abstract
This study expects to decide: (1) the nature of math learning gadgets in view of a reasonable way to deal with work on imaginative reasoning and numerical correspondence capacity of understudies of SMP PAB 2 Helvetia (2) Increasing understudies' numerical inventive ability to reason by utilizing science learning gadgets in light of a sensible methodology, (3) Improving understudies' numerical correspondence capacity by utilizing math learning gadgets in view of a practical methodology. This examination is improvement research utilizing the 4-D improvement model. The showing materials created Teacher's Book, Student Book, Students' Worksheet. Based the aftereffects of the first and second preliminaries, it was gotten: 1) The learning gadgets in light of reasonable methodologies that were created were successful, as far as: a) old style understudy learning fulfillment; b) accomplishment of learning goals; c) learning time; d) understudies' reactions to the parts of learning gadgets and learning exercises are positive (2) expanding understudies' numerical imaginative ability to reason by utilizing science learning gadgets in view of a practical methodology seen in view of the dispersion stage in the pre-test and posttest expanded by 26% with N-gain = 0.55 medium classification; 3) the improvement of understudies' numerical correspondence capacity utilizing math learning gadgets in view of a sensible methodology in light of the dispersion stage in the pre-test and post-test expanded by 32% with N-gain = 0.44 medium classification.

Keywords: Development of learning devices, Realistic Approach-based Mathematics Learning, Creative Thinking Ability, Mathematical Communication Ability

Abstrak
Penelitian ini bertujuan untuk mengetahui: (1) Kualitas perangkat pembelajaran matematika berbasis pendekatan realistik untuk meningkatkan kemampuan penalaran berfikir kreatif dan komunikasi matematis siswa SMP PAB 2 Helvetia (2) Peningkatan kemampuan berfikir kreatif matematis siswa dengan menggunakan perangkat pembelajaran matematika berbasis pendekatan realistik. (3) Peningkatan kemampuan komunikasi matematis siswa dengan menggunakan perangkat pembelajaran matematika berbasis pendekatan realistik. Penelitian ini merupakan penelitian pengembangan dengan menggunakan model pengembangan 4-D. Bahan ajar yang dikembangkan Buku Guru, Buku Siswa, LKPD. Berdasarkan hasil uji kualitas 1 dan uji kualitas 2 diperoleh: 1) Perangkat pembelajaran matematika berbasis perangkat realistik yang dikembangkan efektif, ditunjukkan dari: a) keturunan belajar siswa secara klasikal; b) ketercapaan tujuan pembelajaran; c) waktu pembelajaran; d) respon siswa terhadap komponen -komponen perangkat pembelajaran dan kegiatan pembelajaran adalah positif (2) peningkatan kemampuan berfikir kreatif matematis siswa dengan menggunakan perangkat pembelajaran matematika berbasis pendekatan realistik dilihat berdasarkan tahap penyebaran pada pretes dan posttes meningkat sebesar 26% dengan N-gain = 0,55 kategori sedang ; 3) peningkatan kemampuan komunikasi matematis siswa dengan menggunakan perangkat pembelajaran matematika berbasis pendekatan realistik dilihat berdasarkan tahap penyebaran pada pretes dan posttes meningkat sebesar 32% dengan N-gain = 0,44 kategori sedang.

Kata Kunci: Pengembangan Perangkat Pembelajaran, Pembelajaran Matematika Berbasis Pendekatan Realistik, Kemampuan Berpikir Kreatif, Kemampuan Komunikasi Matematis

INTRODUCTION

Instruction is a work to create and increment self-potential, so it can take care of different life
issues. Schooling is a vital need in creating and working on the quality and standard of human existence itself. Training is a method for forestalling risk, too as a device that can assist with working on the nature of human existence in a supportable way. Sari & Yunarti (2015) contends that, current schooling is supposed to have the option to foster understudies to think imaginatively, be adaptable, take care of issues, team up and creative capacity expected to prevail in work and life. As expressed in the public school system regulation no. 20 of 2003, about the capabilities and points of Indonesia's public training (Habe & Ahiruddin, 2017), in particular: Public schooling capabilities to foster capacities and shape the person and civilization of an honorable country with regards to the scholarly existence of the country, targeting fostering the capability of understudies to become individuals who accept and fear God Almighty, have respectable person, solid, proficient, skilled, innovative, free, and become a majority rule and dependable individuals.

Math is a general science that underlies the improvement of innovation and plays a significant part in different teaches and advances the force of human idea. Simamora et al., (2018) contends that math is a result of human scholarly reasoning. Scholarly reasoning is typically determined from issues that include genuinely day to day existence. In this manner science is likewise called human existence and a way to prepare thinking. Incidentally, not just that, Eviliansas et al., (2018) stated that arithmetic is educated fundamentally focuses on the mentality of understudies so they can tackle issues and are inventive, basic, consistent, scientific, deliberate, and can cooperate.

As per Rahmawati et al., (2014) making sense of that understudy accomplishment in math has not been extremely palatable both at the National and International levels. The accomplishments of Indonesian understudies at the global level are as yet lingering behind contrasted with different nations. It tends to be seen from the consequences of the World Competitiveness Year Book study, Indonesia is at level 37 out of 60 nations (Ministry of Cabinet Affairs, 2021). Comparative circumstances should be visible from the aftereffects of studies directed by PISA (Program For International Student Assessment) and TIMSS (Trends International Mathematics and Science Study). As per Simamora et al., (2018), "The ongoing vision of math training is to dominate the ideas utilized in learning arithmetic, which are utilized to tackle issues”.

Understanding this, the capacity to think inventively is one of the significant capacities that understudies should have. The significance of imaginative ability to reason as per Hevy (in Nasution et al., 2017) recommends that "innovative reasoning is vital in the present worldwide time when the intricacy of issues from all parts of life is required. In imaginative reasoning there are two fundamental parts required, specifically a harmony among rationale and instinct. As per (Marliani, 2015) stated that creative ability to reason are exceptionally valuable for rehearsing different capacities in math in light of the fact that imaginative ability to reason can be deciphered as the capacity to take care of numerical issues with more than one arrangement and understudies think smoothly, adaptable, elaborate, and have innovation in their responses.
As indicated by Munandar (2009) stated that Creativity or imaginative ability can be estimated straightforwardly and by implication, and can utilize test or non-test strategies. There is likewise a device to quantify inventive character qualities, and direct perceptions of innovative execution can be made. This test, similar to the Guilford test, measures familiarity, adaptability, creativity, and elaboration.

Notwithstanding the capacity to think imaginatively in arithmetic, understudies' numerical correspondence capacity is additionally required. Learning exercises are a correspondence interaction to pass messages from instructors on to understudies, pointing that the messages passed on by understudies can be generally welcomed and influence getting it and the development of conduct changes (Lanani, 2013). The significance of numerical correspondence capacity since math is a language and a device, science involves clear definitions and unique images as well as a numerical device that everybody involves in their lives. This is supported by Schulman's explanation in Ansari (2016), that numerical correspondence is; (1) the focal strength for understudies in planning numerical ideas and techniques, (2) achievement capital for understudies towards approaches and arrangements in numerical investigation and examination, (3) a gathering for understudies to speak with their companions to get data, share contemplations and disclosures, conceptualizing, evaluating and honing thoughts.

Baroody (1993) separates correspondence perspectives into five sections, in particular: 1) portrayal, to be specific making portrayals implies making different types of thoughts or issues; 2) tuning in: the capacity to pay attention to the subjects being talked about will influence the understudies' capacity to offer viewpoints or remarks. 3) perusing (perusing): is a perplexing action, since it includes parts of recollecting, grasping, contrasting, breaking down, and sorting out what is contained in the perusing. 4) conversation (examining); In the conversation understudies can communicate and ponder their contemplations connected with the material being considered. Understudies can likewise ask things that are not known or are still in uncertainty. 5) composing (composing); Writing is an action that is done deliberately to communicate and mirror the contemplations that are poured in the media, either paper, PCs or different media.

In view of the issues in the field, it is important to have a learning approach that is more engaging for understudies, which doesn't expect understudies to remember realities, however a methodology that urges understudies to build information as far as they could tell so the adverse consequence on the improvement of understudies' numerical capacities doesn't prompt negative perspectives towards math. To accomplish this, a proper, appropriate, and pertinent learning approach is required. One methodology that is considered suitable is a reasonable methodology. This approach is a way to deal with learning understudies on genuine (relevant) issues, utilizing models, utilizing understudy commitments, intelligent, and utilizing linkages.
Practical Mathematics Education is a hypothesis in math training in view of the possibility that math is a human action and science should be associated in a genuine manner to the setting of understudies' day to day routines as a wellspring of improvement and as an application region through a course of mathematization both evenly and in an upward direction. De Lange in Fauzan (2018) states "there are five qualities in leading RME-based learning: (1) The utilization of genuine settings, (2) The utilization of purpose models, (3) Student's free creation; (4) Interaction, (5) Intertwinning".

This is upheld by a few past investigations. Research led by Maulydia et al., (2017) named "The Development of Mathematical Teaching Materials Through Realistic Mathematics Education to Increase Mathematical Problem Solving of Junior High School Students". Learning gadgets created utilizing a 4-D improvement model. The aftereffects of the examination show that: (1) the learning gadgets created meet the rules of being successful, assessed in view of: culmination of traditional learning results, accomplishment of learning targets, educator's capacity to oversee learning, and understudy exercises. (2) understudies' critical thinking skills increment utilizing the created acquiring gadgets.

METHOD

The kind of examination that will be directed is improvement research. This study will utilize Thiagarajan's 4-D improvement model and specialists will foster showing materials in light of a sensible way to deal with the material for Constructing Curved Side Space. The instructing materials that will be created are the Teacher's Book, Student's Book, and Student Worksheets.

This examination is partitioned into two phases, the main stage is the improvement of learning gadgets. Improvement of learning gadgets which incorporate the legitimacy of the Teacher's Book, Student's Book, Student Worksheets and the legitimacy of innovative reasoning skill test instruments and numerical correspondence capacity tests. The subsequent stage is to evaluate a numerical learning device in light of a practical methodology that has been approved to see its viability in class IX SMP PAB - 2 Helvetia.

The learning gadget improvement model utilized is the 4-D Thiagarajan, Semmel and Semmel model. As indicated by Trianto (2013), this model comprises of 4 transformative phases, in particular the definition stage, the plan stage, the foster stage, and the dispersal stage. This stages is explained in the flowchart beneath:
The Development of Mathematics Learning Devices Based on Realistic Approach to Improve Creative Thinking and Mathematical Communication Ability for Junior High School Students at SMP PAB 2 Helvetia, Satria Wirapranata, Edy Surya 2015

Defining Stage

The motivation behind the definition stage is to decide and characterize the learning conditions. Through the examination, the goals and limits of the material for learning not entirely settled. The underlying and last examination of the educational experience completed up to this point expects to decide the essential issues required in the advancement of learning materials. In light of the aftereffects
of perceptions made at SMP PAB - 2 Helvetia, it shows that during the growing experience, educators actually apply the talk technique in instructing, so the focal point of learning is on the instructor which makes understudies become detached. This should be visible when the instructor wraps up making sense of the material and asks the understudies once more, yet the understudies simply keep quiet.

Design Stage

The motivation behind this stage is to configuration learning gadgets so models are gotten (instances of learning gadgets). The stages at this stage incorporate the planning of tests, media determination, design choice and beginning plan. The planning of the test is an undertaking examination and idea investigation portrayed in the determination of learning goals. The test being referred to is a trial of understudy learning results, specifically a trial of understudies' imaginative reasoning and numerical correspondence capacity. To plan the trial of understudy learning results, a lattice of inquiries and a scoring reference is made. The scoring utilized is the Benchmark Reference Assessment (PAP) because the PAP is situated to the understudy's capacity level for the material being tried so the score acquired mirrors the level of his capacity.

Development Stage

The objective of the improvement stage is to deliver a decent last draft. In draft 1 (learning gadgets), the learning gadgets and exploration instruments were approved by specialists, then, at that point, the test instruments for imaginative reasoning and numerical correspondence capacity were tried in classes outside the example. Then a field preliminary was completed, which intended to get immediate contribution to the learning gadgets that have been arranged to create the last gadget. Approval stage, in this step the learning gadgets and examination instruments are approved by specialists in their fields called draft 1. The specialists alluded to for this situation are capable validators which incorporate UNIMED science training instructors and math educators.

The motivation behind this stage is to create a decent examination instrument, as in it is substantial and doable to use during field preliminaries. The preliminary stage is done to acquire direct contribution to the learning gadgets that have been arranged in order to deliver the last gadget. The learning gadgets will be tried in schools to see the adequacy of the learning gadgets that have been planned, to expand understudies' imaginative reasoning and numerical correspondence capacity.

Dissemination Stage

The dissemination stage is intended to socialize learning devices that have been tested. This activity was limited to teachers and students and was only carried out at the school where the researcher conducted the research, namely SMP PAB – 2 Helvetia.
RESULTS AND DISCUSSION

This examination is improvement research, so the result of this advancement research is a math learning device in light of a reasonable methodology. The reason for this advancement research is to decide: (1) the legitimacy and viability of learning gadgets in view of the created sensible methodology (2) expanding understudies' numerical imaginative ability to reason using learning gadgets in light of the created practical methodology, (3) further developing understudies' numerical correspondence capacity using learning gadgets in light of the created reasonable methodology.

This examination centers around creating learning gadgets in light of a sensible way to deal with work on understudies' imaginative reasoning and numerical correspondence capacity. The showing materials created are Teacher's Book, Student's Book, Learning Implementation Plans and Student Worksheets.

To accomplish this objective, improvement research was led utilizing the 4-D Model from Thiagarajan, Semmel and Semmel which was portrayed as covering the characterize, plan, create, and scatter stages. Information investigation and examination results are introduced as follows:

Defining Stage

The results of the analysis of the academic ability of PAB 2 Helvetia Middle School students are still relatively low. This is based on the results of a direct interview with one of the mathematics teachers of SMP PAB 2 Helvetia, who said that there were still many students who had not achieved the minimum score on the previous semester's math exam. The teacher said that some students did not seem to like mathematics very much, it was seen when the teacher taught in front of the class, many students looked bored and did not understand what the teacher explained, so this affected student learning outcomes which resulted in low creative thinking ability and student’s mathematical communication.

Designing Stage

The aim of this stage is to design learning devices, so that prototypes (examples of learning devices) are obtained for curved side space based on realistic approach. Activities at this stage are the tests preparation, media selection, formatting and beginning design of learning devices.

Test Forming Result

The created test is acclimated to the mental capacity level. The scoring of the experimental outcomes utilizes an assessment guide that contains the key and scoring rules for every thing. For additional subtleties, the imaginative reasoning and numerical correspondence test lattices that have been created should be visible in Table 1 and Table 2.

<table>
<thead>
<tr>
<th>No</th>
<th>Stages</th>
<th>Aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fluent</td>
<td>Solve problems and provide answers to more than one answer</td>
</tr>
<tr>
<td>2.</td>
<td>Flexibility</td>
<td>Answering questions in a variety of ways</td>
</tr>
<tr>
<td>3.</td>
<td>Originality</td>
<td>Giving a different answer than usual</td>
</tr>
</tbody>
</table>
4. Elaborate | Develop ideas to answer a question

Table 2. Mathematical Communication Ability Test Grid

<table>
<thead>
<tr>
<th>No</th>
<th>Stages</th>
<th>Aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Writing</td>
<td>Students can explain an idea or situation from a given picture/graph in their own words in written form.</td>
</tr>
<tr>
<td>2.</td>
<td>Drawing</td>
<td>Students can state a situation with pictures/graphs.</td>
</tr>
<tr>
<td>3.</td>
<td>Mathematical Expression</td>
<td>Students can express a situation into a mathematical model.</td>
</tr>
</tbody>
</table>

Media Selection Result

The results of the media selection were adjusted to the results of task analysis, concept analysis and the characteristics of the PAB 2 Helvetia Junior High School students. The overall media and learning devices for curved side space construction can be seen in Table 3.

Table 3. Media and Learning Devices For s Curved Side Space

<table>
<thead>
<tr>
<th>Meetings</th>
<th>Learning Media</th>
<th>Learning Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Teachers’ Book, Students’ Book, Students’ Worksheet, Powerpoint</td>
<td>Karton, jangka, penggaris, gunting, benda-benda berbentuk tabung (kaleng, botol, pipa, dll)</td>
</tr>
<tr>
<td>2</td>
<td>Teachers’ Book, Students’ Book, Students’ Worksheet, Powerpoint</td>
<td>Kaleng susu, pasir/beras</td>
</tr>
<tr>
<td>3</td>
<td>Teachers’ Book, Students’ Book, Students’ Worksheet, Powerpoint</td>
<td>Karton, jangka, penggaris, gunting, benda-benda berbentuk kerucut (topi ulang tahun, cone es krim, corong minyak dll)</td>
</tr>
<tr>
<td>4</td>
<td>Teachers’ Book, Students’ Book, Students’ Worksheet, Powerpoint</td>
<td>Kunt, kaleng, pasir/beras</td>
</tr>
<tr>
<td>5</td>
<td>Teachers’ Book, Students’ Book, Students’ Worksheet, Powerpoint</td>
<td>Penggaris, jangka, bola kasti, kelereng, dll</td>
</tr>
</tbody>
</table>

Formatting Result

The aftereffects of designing in this study were changed in accordance with the 2013 educational program. As per the 2013 educational plan, the Student Book design alludes to the principles of the National Education Standards and the Students’ Work Sheet design is made in variety with the goal that understudies will be intrigued and roused to learn. For the configuration of the innovative reasoning and numerical correspondence capacity test, it alludes to the marks of inventive reasoning and numerical correspondence capacity. The whole gadget planned is adjusted to a sensible methodology so it turns into a solitary unit and afterward it is trusted that its application will affect working on the imaginative reasoning and numerical correspondence capacity of PAB 2 Helvetia Junior High School understudies.
The Development of Mathematics Learning Devices Based on Realistic Approach to Improve Creative Thinking and Mathematical Communication Ability for Junior High School Students at SMP PAB 2 Helvetia, Satria Wiraprana, Edy Surya 2019

Final Design Result

The principal movement in the last plan is composing learning gadgets. At this stage a beginning configuration was delivered as a Teacher’s Book, Students’ Book and Student Worksheet for 5 gatherings, a numerical imaginative reasoning skill test, a numerical correspondence capacity test, scoring rules, and answer keys.

Developing Stage

Before the learning devices and research instruments were tested, first the learning devices and research instruments were validated to five validators. The team of experts (validators) involved in validating the teaching materials that have been developed (draft I) consists of 3 lecturers of the UNIMED mathematics education study program and 2 mathematics teachers with the consideration that teachers have attended 2013 Curriculum training.

Validity Test Result

Table 4. Validity Test Result for Teacher’s Book

<table>
<thead>
<tr>
<th>No</th>
<th>Rated Aspect</th>
<th>Range</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Format</td>
<td>4,34</td>
<td>Valid</td>
</tr>
<tr>
<td>2</td>
<td>Language</td>
<td>4,37</td>
<td>Valid</td>
</tr>
<tr>
<td>3</td>
<td>Illustration</td>
<td>4,36</td>
<td>Valid</td>
</tr>
<tr>
<td>4</td>
<td>Content</td>
<td>4,31</td>
<td>Valid</td>
</tr>
</tbody>
</table>

From Table 4, it can be seen that the average value of the total validation of Teacher's Books is 4.35. Furthermore, this value is referred to the validity criteria that have been set. By referring to these criteria, it can be concluded that the Teacher's Book developed meets the criteria for validity in the "valid" category. The five validators concluded that the Teacher's Book could be used with minor revisions.

Table 5 Validity Test Result for Student’s Book

<table>
<thead>
<tr>
<th>No</th>
<th>Rated Aspect</th>
<th>Range</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Format</td>
<td>4,51</td>
<td>Valid</td>
</tr>
<tr>
<td>2</td>
<td>Language</td>
<td>4,43</td>
<td>Valid</td>
</tr>
<tr>
<td>3</td>
<td>Illustration</td>
<td>4,32</td>
<td>Valid</td>
</tr>
<tr>
<td>4</td>
<td>Content</td>
<td>4,34</td>
<td>Valid</td>
</tr>
</tbody>
</table>

From Table 5, it can be seen that the total average value of Student Book validation is 4.40. Furthermore, this value is referred to the validity criteria that have been set. By referring to these criteria, it can be concluded that the Student Book developed meets the criteria for validity in the "valid" category. The five validators concluded that the Student Book could be used with minor revisions.
From Table 6, it can be seen that the total average value of Students’ Worksheet validation is 4.23. Furthermore, this value is referred to the validity criteria that have been set. By referring to these criteria, it can be concluded that the Students’ Worksheet developed meets the criteria for validity in the “valid” category. The five validators concluded that the Students’ Worksheet could be used with minor revisions.

Table 7. Validity of Creative Thinking Ability Test Items

<table>
<thead>
<tr>
<th>Items</th>
<th>r_{xy}</th>
<th>t_{score}</th>
<th>t_{table}</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.8585</td>
<td>9.617</td>
<td>2.035</td>
<td>Valid</td>
</tr>
<tr>
<td>2.</td>
<td>0.8240</td>
<td>8.354</td>
<td>2.035</td>
<td>Valid</td>
</tr>
<tr>
<td>3.</td>
<td>0.8694</td>
<td>10.108</td>
<td>2.035</td>
<td>Valid</td>
</tr>
<tr>
<td>4.</td>
<td>0.7967</td>
<td>7.573</td>
<td>2.035</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Table 7 is a test of the creative thinking ability test research instrument for 4 essay questions with a significant level of 5%, dk = 33, obtained $t_{table} = 2.035$. If you refer to the test criteria, with the test criteria being $t_{count} > r_{table}$, the creative thinking ability test can be used or is valid.

Table 8 Validity of Mathematics Communication Ability Test Items

<table>
<thead>
<tr>
<th>Items</th>
<th>r_{xy}</th>
<th>t_{score}</th>
<th>t_{table}</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.8075</td>
<td>7.864</td>
<td>2.035</td>
<td>Valid</td>
</tr>
<tr>
<td>2.</td>
<td>0.7175</td>
<td>5.917</td>
<td>2.035</td>
<td>Valid</td>
</tr>
<tr>
<td>3.</td>
<td>0.8611</td>
<td>9.729</td>
<td>2.035</td>
<td>Valid</td>
</tr>
<tr>
<td>4.</td>
<td>0.7109</td>
<td>5.807</td>
<td>2.035</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Table 8 is a test of the research instrument for mathematical communication ability tests for 4 essay questions with a significant level of 5%, dk = 33, obtained $t_{table} = 2.035$. If you refer to the test criteria, with the test criteria being $t_{count} > t_{Table}$, the mathematical communication ability test can be used or is valid.

The Achievement of Learning Objectives

Examination of the accomplishment of learning goals was completed to decide the level of accomplishment of learning targets for each posttest thing of imaginative reasoning skill and numerical correspondence capacity did in two preliminaries. The consequences of the capacity to think imaginatively in the principal preliminary showed that the accomplishment of learning targets being referred to number 1 was acquired at 70.91%, the accomplishment of learning goals for question number 2 was gotten at 68.99%, and the accomplishment of learning targets being referred to number 3 was acquired at 71.88%. As per the standards for accomplishing learning targets, it is said that the learning
goals are accomplished with the models of ≥75% of the most extreme score of 3 inquiries, hence the accomplishment of learning goals in the main preliminary, specifically the posttest consequences of imaginative ability to reason have not been accomplished.

In the aftereffects of numerical correspondence capacity in the main test, it very well may be seen that the consequences of numerical correspondence capacity in the primary test show that the accomplishment of learning goals being referred to number 1 is 71.88%, the accomplishment of learning targets being referred to number 2 is 72.40%, and accomplishment the learning goals of inquiry number 3 were acquired at 74.22%. As per the rules for accomplishing learning targets, it is said that the learning goals are accomplished with the measures of ≥75% of the greatest score of 3 inquiries, in this manner the accomplishment of learning targets in the primary preliminary, to be specific the posttest consequences of correspondence capacity have not been accomplished.

Disseminating Stage

Besides, upgrades were made to deliver learning gadgets that meet great viability. The consequences of the modification in the principal preliminary brought about draft III which will be tried on class IX 7 understudies of PAB 2 Helvetia Private Junior High School with a sum of 32 understudies. The subsequent preliminary was directed to gauge the viability of the learning gadget (draft III) which was created in view of a sensible numerical methodology that plans to work on understudies' imaginative reasoning and numerical correspondence capacity.

The Achievement of Learning Objectives

The consequences of imaginative reasoning skill in the subsequent preliminary, the accomplishment of learning goals being referred to number 1 was gotten at 75.96%, the accomplishment of learning targets being referred to number 2 was acquired at 77.44%, and the accomplishment of learning goals being referred to number 3 was gotten at 78.85%. As per the rules for accomplishing learning goals, it is said that the learning targets have been accomplished with the standards of 75% of the greatest score for everything. Hence the accomplishment of learning goals in the subsequent preliminary, particular aftereffects of imaginative abilities to reason have been accomplished.

In the consequences of numerical correspondence capacity in the subsequent preliminary, it tends to be seen that the accomplishment of learning goals being referred to number 1 is 76.82%, the accomplishment of learning targets for question number 2 is 77.08%, and the accomplishment of learning goals for question number 3 is 78.85. %, As per the models for accomplishing the learning targets, it is said that the learning goals have been accomplished with a base measure of 75% of the greatest score for everything. Hence the accomplishment of learning targets in the subsequent preliminary, specifically the aftereffects of numerical correspondence capacity have been accomplished.

The Development of an Effective Learning Devices Based on Realistic Approach in Improving Students’ Creative Thinking and Mathematical Communication Ability
The learning gadgets created in this exploration are science learning gadgets in light of a reasonable methodology. As general rule, the motivation behind this examination is to deliver an item through learning gadgets that can work on the imaginative reasoning and numerical correspondence capacity of middle school understudies. The outcomes showed that the practical methodology-based learning gadgets created utilizing the 4-D model met the substantial and successful measures in further developing understudies' imaginative ability to reason.

In accordance with research directed by Fauzan, (2018) in his exploration entitled The Development of a RME-Based Geometry Course for Indonesian Primary Schools, shows that RME-based math showing materials for understudies in Grade fourth in Indonesian primary schools meet the standards substantial, viable, and compelling. A practical methodology can resolve a few issues, especially in changing the homeroom environment and giving direction on the best way to create and apply quality course materials for educating math.

Improving Students' Creative Thinking Ability by Using Mathematical Learning Devices Based on a Realistic Approach

The consequences of this study show that the utilization of learning gadgets in light of a reasonable methodology can further develop understudies' imaginative ability to reason. This is upheld by research led by Suprapti (2019) which expresses that "there is an expansion in understudies' numerical imaginative ability to reason in the familiarity part of 10.3%, from 31% to 41.3%. Moreover, understudies' numerical imaginative reasoning skill in the part of adaptable reasoning (adaptability) expanded by 9%, to be specific from 28.6% to 37.2%, for the first reasoning viewpoint (creativity) expanded by 19%, specifically from 14.4% to 33.4 %. In the last viewpoint, specifically the elaboration perspective, it expanded by 11.87%, from 23.4% to 35.27%”.

Improving Students' Mathematical Communication Ability by Using Mathematics Learning Devices Based on Realistic Approach

In view of the consequences of the examination in expanding understudies' correspondence capacity in scattered, there was an increment from the pretest and posttest, that is 32.41%. By utilizing the n-gain equation, the acquired addition = 0.44 can be deciphered in the medium class, with the typical numerical correspondence capacity of understudies on composing part of 36.31%, drawing 25.87%, and numerical articulations 35.04%. This is in accordance with the consequences of Habsah (2017)'s examination that "understudies' numerical correspondence capacity have expanded to 39.12% by utilizing showing materials in view of the created reasonable methodology”.

CONCLUSION

In light of the consequences of the examination and conversation in this review, a few ends were advanced as follows; (1) Learning gadgets in view of reasonable methodologies created are compelling in working on understudies' imaginative reasoning and numerical correspondence capacity. (2) Increasing understudies' numerical inventive ability to reason by utilizing gadgets created on bended
The Development of Mathematics Learning Devices Based on Realistic Approach to Improve Creative Thinking and Mathematical Communication Ability for Junior High School Students at SMP PAB 2 Helvetia, Satria Wiraprana, Edy Surya 2023

side-space develops expanded at the spread stage by 26.42% with a normal of 0.53, (3) The expansion in understudies’ numerical correspondence capacity by utilizing a gadget created on the bended side space building material expanded at the scatter stage by 32.41% with a normal of 0.79.

ACKNOWLEDGMENT

On this event the creator might want to offer genuine thanks and most elevated appreciation to every one of the people who have helped the creator, to the family who have upheld the creator all around. Mr. Prof. Dr. Bornok Sinaga, M.Pd as the Director of Postgraduate Studies UNIMED, as well as the Principal, educators and authoritative staff of SMP PAB 2 Helvetia who have allowed to lead research at the school.

REFERENCES

