Koneksi Matematis Siswa Bergaya Kognitif Field-Independent Pada Pemecahan Masalah

  • Aziz Rizky Muhdiyanto UNIVERSITAS NEGERI MALANG
  • Erry Hidayanto Universitas Negeri Malang
  • Tjang Daniel Chandra
Keywords: Proses Koneksi Matematis, Gaya Kognitif, Turunan Fungsi Aljabar

Abstract

Penelitian ini bertujuan untuk menganalisis proses koneksi matematis siswa kelas XI SMA bergaya kognitif Field-Independent pada pemecahan masalah turunan fungsi aljabar. Metode penelitian ini adalah deskriptif kualitatif. Instrumen Group Embedded Figure Test digunakan dalam memilih dua subjek penelitian, yaitu dua siswa bergaya kognitif Field-Independent. Data penelitian diperoleh dari hasil tes koneksi matematis dan wawancara yang dilakukan pada waktu yang berbeda. Kredibilitas data diperoleh dari triangulasi metode pengumpulan data yaitu tes koneksi matematis dan wawancara. Hasil penelitian menunjukkan bahwa siswa bergaya kognitif Field-Independent melakukan aktivitas koneksi pada proses pemecahan masalah, yaitu mengidentifikasi informasi secara detail, mengomunikasikan informasi dengan kalimatnya sendiri, dan menghubungkan pengetahuan matematika yang telah dipahami sebelumnya dalam pemecahan masalah. Siswa mampu mengaplikasikan konsep turunan fungsi dalam menentukan nilai optimum fungsi namun tidak memahami koneksi antara konsep turunan fungsi dan kemiringan garis lurus. Aktivitas koneksi matematis berupa menginterpretasikan jawaban belum ditunjukkan siswa pada tahap memeriksa kembali jawaban.

Downloads

Download data is not yet available.

Author Biographies

Erry Hidayanto, Universitas Negeri Malang

Departemen Matematika

Tjang Daniel Chandra

Departemen Matematika

References

Amalia, A. F., Sappaile, B. I., Minggi, I., Tahmir, S., & Arsyad, N. (2022). Description of Factors Affecting Students Mathematical Connection. International Conference on Educational Studies in Mathematics (ICoESM 2021, February, 138–144.

Ariyani, W., Suyitno, H., & Junaedi, I. (2020). Mathematical Connection Ability and Students’ Independence in Missouri Mathematics Project E-Learning. Unnes Journal of Mathematics Education Research, 9(2), 185–189. http://journal.unnes.ac.id/sju/index.php/ujmer

Astari, E., & Marsigit. (2019). Mathematical connections process for elementary school students in problem solving of statistics Mathematical connections process for elementary school students in problem solving of statistics. Journal of Physics: Conference Series, 1–8. https://doi.org/10.1088/1742-6596/1280/4/042008

Ayunani, D. S., Mardiyana, & Indriati, D. (2020). Analyzing mathematical connection skill in solving a contextual problem. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1511/1/012095

Baiduri, Putri, O. R. U., & Alfani, I. (2020). Mathematical connection process of students with high mathematics ability in solving PISA problems. European Journal of Educational Research, 9(4), 1527–1537. https://doi.org/10.12973/EU-JER.9.4.1527

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (4th ed.). Boston, MA: Pearson.

Dolores-Flores, C., Rivera-López, M. I., & García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369–389. https://doi.org/10.1080/0020739X.2018.1507050

Firda Diana, R., Bambang Irawan, E., & Susiswo. (2017). Proses Koneksi Matematis Siswa Bergaya Kognitif Reflektif Dalam Menyelesaikan Masalah Aljabar Berdasarkan Taksonomi Solo. Jurnal Kajian Pembelajaran Matematika, 1(1), 52–63. http://journal2.um.ac.id/index.php/jkpm

García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227–252. https://doi.org/10.1080/0020739X.2017.1355994

García-García, J., & Dolores-Flores, C. (2020). Exploring pre-university students’ mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, 5211, 1–25. https://doi.org/10.1080/0020739x.2020.1729429

Hidayati, V. R., Maulyda, M. A., Gunawan, G., Rahmatih, A. N., & Erfan, M. (2020). System of Linear Equation Problem Solving : Descriptive-Study about Students ’ Mathematical Connection Ability System of Linear Equation Problem Solving : Descriptive- Study about Students ’ Mathematical Connection Ability. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1594/1/012042

Jupri, A., Drijvers, P., & van den Heuvel-Panhuizen, M. (2015). Improving Grade 7 Students’ Achievement in Initial Algebra Through a Technology-Based Intervention. Digital Experiences in Mathematics Education, 1(1), 28–58. https://doi.org/10.1007/s40751-015-0004-2

Kenedi, A. K., Helsa, Y., Ariani, Y., Zainil, M., & Hendri, S. (2019). Mathematical connection of elementary school students to solve mathematical problems. Journal on Mathematics Education, 10(1), 69–79. https://doi.org/10.22342/jme.10.1.5416.69-80

Messick, S. (1984). The Nature of Cognitive Styles: Problems and Promise in Educational Practice. Educational Psychologist, 19(2), 59–74. https://doi.org/10.1080/00461528409529283

Minarti, E. D., Purwasih, R., & Sariningsih, R. (2017). Mathematical Thinking Ability
in Solving Mathematics Problems Consider Cognitive Styles of Field Independent and Field Dependent. Proceedings Of The 5th International Conference On Research, Implementation And Education Of Mathematics And Sciences (5th ICRIEMS), 597–602.

Mulbar, U., Purnamawati, & Nasrullah. (2017). Students ’ Mathematical Connection Based on Levels of Mathematical Abilities : 149(Icest), 172–174.

Mulbar, U., Rahman, A., & Ahmar, A. S. (2017). Analysis of the ability in mathematical problem-solving based on SOLO taxonomy and cognitive style. World Transactions on Engineering and Technology Education, 15(1), 68–73. https://doi.org/10.26858/wtetev15i1y2017p6873

NCTM. (2000). Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.

Pambudi, D. S., Budayasa, I. K., & Lukito, A. (2018). Mathematical Connection Profile of Junior High School Students in Solving Mathematical Problems based on Gender Difference. International Journal of Scientific Research and Management, 6(08), 73–78. https://doi.org/10.18535/ijsrm/v6i8.m01

Polya, G. (1973). How to Solve It: A new aspect of mathematical method. In Princeton University (2nd ed.). https://doi.org/10.1201/9781003037149-1

Rittle-johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge in mathematics. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1102–1118). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199642342.013.014

Silma, U., Sujadi, I., & Nurhasanah, F. (2019). Analysis of students’ cognitive style in learning mathematics from three different frameworks. AIP Conference Proceedings, 2194(December). https://doi.org/10.1063/1.5139850

Son, A. L., Darhim, & Fatimah, S. (2020). Students’ mathematical problem-solving ability based on teaching models intervention and cognitive style. Journal on Mathematics Education, 11(2), 209–222. https://doi.org/10.22342/jme.11.2.10744.209-222

Taufik, A. R., & Zainab, N. (2021). Mathematical literacy of students in solving PISA-like problems based on cognitive styles of field-dependent and Field-Independent. Journal of Physics: Conference Series, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042080

Ulya, H. (2015). Hubungan Gaya Kognitif Dengan Kemampuan Pemecahan Masalah Matematika Siswa. Jurnal Konseling GUSJIGANG, 1(2). https://doi.org/10.24176/jkg.v1i2.402
Published
2022-09-15
How to Cite
Muhdiyanto, A., Hidayanto, E., & Chandra, T. (2022). Koneksi Matematis Siswa Bergaya Kognitif Field-Independent Pada Pemecahan Masalah. Jurnal Cendekia : Jurnal Pendidikan Matematika, 6(3), 2882-2894. https://doi.org/10.31004/cendekia.v6i3.1724
Share |