Miskonsepsi Mahasiswa dalam Menyelesaikan Masalah Standar Deviasi Ditinjau dari Tipe Kepribadian Influence
Abstract
Dibutuhkan kemampuan dan pemahaman mendalam dalam menanggapi, dan menyelesaikan masalah matematika. Perbedaan pemahaman konsep oleh siswa dengan para ahli disebut dengan miskonsepsi. Setiap individu memiliki cara tersendiri dalam menanggapi, dan memahami suatu permasalahan, hal tersebut dipengaruhi oleh adanya perbedaan tipe kepribadian masing-masing siswa. Tujuan penelitian ini adalah mendeskripsikan miskonsepsi mahasiswa matematika dalam menyelesaikan masalah standar deviasi ditinjau dari tipe kepribadian influence. Instrumen pada penelitian ini adalah angket tipe kepribadian, soal tes tulis, dan pedoman wawancara. Berdasarkan teknik purposive sampling, data hasil angket tes tipe kepribadian, dan soal tes yang diberikan kepada 35 mahasiswa matematika offering H mata kuliah metode statistika, terdapat 3 mahasiswa tipe kepribadian influence yang mengalami miskonsepsi sebagai subjek dari penelitian ini. Hasil dari penelitian ini mengungkapkan bahwa terdapat tiga miskonsepsi yang dialami mahasiswa, yakni (1) range dan variasi data mempengaruhi ukuran standar deviasi; (2) histogram dengan penyebaran paling dekat mean, memiliki standar deviasi yang besar; dan (3) histogram dengan mean tertinggi, memiliki standar deviasi yang tinggi pula. Temuan ini diharapkan dapat memperbaiki cara pendidik dalam mengajarkan statistika deskriptif, terutama konsep standar deviasi yang sedemikian hingga miskonsepsi tersebut dapat diminimalisir.
Downloads
References
Ben-Zvi, D., & Garfield, J. (2004). Statistical Literacy, Reasoning, and Thinking:
Goals, Definitions, and Challenges. In The Challenge of Developing Statistical Literacy, Reasoning and Thinking (In D. Ben-). Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-2278-6_1
Bluman, A. G. (2009). Elementary Statistics: A Step by Step Approach (7th ed.). McGraw-Hill.
Boels, L., Bakker, A., Van Dooren, W., & Drijvers, P. (2019). Conceptual Difficulties when Interpreting Histograms: A review. Educational Research Review, 28(October 2018), 100291. https://doi.org/10.1016/j.edurev.2019.100291
Bradshaw, L., & Templin, J. (2014). Combining Item Response Theory and Diagnostic Classification Models: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions. Psychometrika, 79(3), 403–425. https://doi.org/10.1007/s11336-013-9350-4
Budiyono. (2009). Statistik Untuk Penelitian. Sebelas Maret Press.
Burrill, G., & Camden, M. (2005). Curricular Development in Statistics Education: International Association for Statistical Education 2004 Roundtable. International Statistical Institute.
Cooper, L. L. (2018). Assessing Students’ Understanding of Variability in Graphical Representations that Share the Common Attribute of Bars. Journal of Statistics Education, 26(2), 110–124. https://doi.org/10.1080/10691898.2018.1473060
Cooper, L. L., & Shore, F. S. (2008). Students’ Misconceptions in Interpreting Center and Variability of Data Represented via Histograms and Stem-and-Leaf Plots. Journal of Statistics Education, 16(2). https://doi.org/10.1080/10691898.2008.11889559
Curran-Everett, D. (2008). Explorations in statistics: Standard deviations and standard errors. American Journal of Physiology - Advances in Physiology Education, 32(3), 203–208. https://doi.org/10.1152/advan.90123.2008
Delmas, R., Garfield, J., Ooms, A., & Chance, B. (2007). Assessing Students’ Conceptual Understanding After a First Course in Statistics. Statistics Education Research Journal, 6(2), 28–58. https://doi.org/10.52041/serj.v6i2.483
Delmas, R., & Liu, Y. (2005). Exploring Students’ Conceptions of The Standard Deviation. Statistics Education Research Journal, 4(1), 55–82.
Durkin, K., & Rittle-Johnson, B. (2014). Diagnosing misconceptions: Revealing changing decimal fraction knowledge. Learning and Instruction, 37, 21–29. https://doi.org/10.1016/j.learninstruc.2014.08.003
Garfield, J., & Ahlgren, A. (1988). Difficulties in learning basic concept in statistic: Implications for research. Journal for Research in Mathematics Education, 19, 44–63.
Gradini, E. (2016). Miskonsepsi dalam Pembelajaran Matematika Sekolah Dasar Di Dataran Tinggi Gayo. Journal of Chemical Information and Modelling, 3(2), 52–60.
Huck, S. . (2009). Statistical Misconceptions. Taylor & Francis Group.
Husna, N. (2019). Miskonsepsi Siswa dalam Materi Persamaan Linear Satu Variabel pada Siswa SMP Negeri 2 Sebawi. Educatio, 14(2). https://doi.org/10.29408/edc.v14i2.1593
Ismail, Z., & Chan, S. W. (2015). Malaysian students’ misconceptions about measures of central tendency: An error analysis. AIP Conference Proceedings, 1643(February), 93–100. https://doi.org/10.1063/1.4907430
Kamilia, I. D., Sugiarti, T., Trapsilasiwi, D., Susanto, & Hobri. (2018). Analisis Level Berpikir Siswa Berdasarkan Taksonomi SOLO Dalam Menyelesaikan Soal Cerita SPLDV Ditinjau Dari Tipe Kepribadian Florence Littuer. Kadikma, 9(2).
Kharis, M., Agoestanto, A., & Zuhair, M. (2018). Misconception as a critical and creative thinking inhibitor for mathematics education students. Unnes Journal of Mathematics Education, 7(1), 57–62. https://doi.org/10.15294/ujme.v7i1.18078
Loeb, S., Dynarski, S., McFarland, D., Morris, P., Reardon, S., & Reber, S. (2017). Descriptive analysis in education: A guide for researchers (NCEE 2017-, Issue March). U.S. Department of Education, Institute of Education Sciences. National Center for Education Evaluation and Regional Assistance. https://eric.ed.gov/?id=ED573325
Magina, S., Carzola, I., Gitirana, V., & Guimaraes, G. (2008). Conception and Misconception of Average: A Comparative Study Between Teachers and Students. Proceedings of the Eleventh International Congress on Mathematical Education.
Maryati, I., & Priatna, N. (2018). Analysis of statistical misconception in terms of statistical reasoning. Journal of Physics: Conference Series, 1013(1). https://doi.org/10.1088/1742-6596/1013/1/012206
Mevarech, Z. R. (1983). A DEEP STRUCTURE MODEL OF STUDENTS’ STATISTICAL MISCONCEPTIONS. Educational Studies in Mathematics, 14(1), 415–429.
Mohyuddin, R. G., & Khalil, U. (2016). Misconceptions of students in learning mathematics at primary level. Bulletin of Education and Research, 38(1), 133–162.
Munggaran, N. I. P., & Setiawan, E. B. (2019). Prediksi Kepribadian DISC dengan K-Nearest Neighbors Algorithm (KNN) Menggunakan Pembobotan TF-IDF dan TF-Chi Square. E-Proceeding of Engineering, 6(2).
Özkan, E. M. (2011). Misconceptions in radicals in high school mathematics. Procedia - Social and Behavioral Sciences, 15, 120–127. https://doi.org/10.1016/j.sbspro.2011.03.060
Radiusman, R., Yurniwati, Y., Simanjuntak, M., Sabariyah, R. J., & Nurmawanti, I. (2020). Students’ Vocational High School Misconception Reviewed from Written Mathematical Communication Ability. Indonesian Journal of Science and Mathematics Education, 3(2), 133–143. https://doi.org/10.24042/ijsme.v3i2.6075
Shin, E. (2013). The DISC Codes. Ace Learnings.
Slauson, L. V. (2008). Students Conceptual Undertanding of Variability. Ohio State University.
Smolleck, L., & Hershberger, V. (2011). Playing with science: An investigation of young children’s science conceptions and misconceptions. Current Issues in Education, 14.
Suprapto, N. (2020). Do We Experience Misconceptions?: An Ontological Review of Misconceptions in Science. Studies in Philosophy of Science and Education, 1(2), 50–55. https://doi.org/10.46627/sipose.v1i2.24
Sutrisno, & Murtianto, Y. H. (2016). Miskonsepsi Mahasiswa Pada Mata Kuliah Statistika Deskriptif Materi Ukuran Tendensi Sentral. Media Penelitian Pendidikan, Jurnal Penelitian Dalam Bidang Pendidikan Dan Pengajaran, Vol 10(No 1).
Thompson, F., & Logue, S. (2006). An exploration of common student misconceptions in science. International Education Journal, 7, 553–559.
Tracht, V. A. (2011). Student Misconceptions in Mathematics: The Ordered Pair Misconception. The University of Montana, 1–8.
Copyright (c) 2023 Adinda Beauty Afnenda, Sukoriyanto sukoriyanto, I Nengah Parta
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.